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The primary objectives of spatial data analysis are, predicting the response variable’s values at unobserved
locations, and interpreting the relationship between response variables and covariates. These objectives are expected
to be achieved by the proposed Geographically Weighted Regression (GWR). GWR’s different estimated coefficients
for each location express location-specific heterogeneity.However, smaller numbers of observation locations can lead
to numerical instability in GWR’s coefficient estimations [1]. To resolve this problem, Bayesian GWR (BGWR) has
been proposed, which estimates GWR parameters in a Bayesian framework. BGWR enables coefficient estimation
through a higher numerical stability than in GWR, by assuming identical prior distributions for regression across
locations.Nevertheless, these methods may continue to produce coefficient estimates that differ significantly between
adjacent locations. Values between adjacent locations are expected to be similar; therefore, we propose a method
that combines Bayesian Fused Lasso [2] with the prior distribution of coefficients in BGWR. The proposed method
is expected to improve prediction accuracy, by facilitating coefficient equivalence at nearby locations.
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