

Temporal Ordering and Manifold Recovery on Noisy Data

Wanjie Wang¹, Xin T. Tong², Yuguan Wang³, and Yuehaw Khoo³

¹National University of Singapore, Department of Statistics and Data Science, Singapore ²National University of Singapore, Department of Mathematics, Singapore ³University of Chicago, Department of Statistics, United States

The analysis of proteins and biological macromolecules is of great interest today, with the development of singleparticle cryo-electron microscopy (cryo-EM). The observation Y_i follows $X_{t_i} + Noise$ because of the motions of the molecule. Since the motions repeated a hidden pattern, the ordering of t_i does not have the same ordering with i. Hence, a proper ordering of Y_i will largely improve the recovery of the functional X(t).

In our work, we present a spectral method on the Laplacian matrix to order Y_i . We first reduce the noise in Y by taking the top eigenvectors of Y. Let Z be the matrix formed by these eigenvectors and we find the ordering of rows in Z. To do it, we first build the Gaussian kernel matrix on Z and then set L_Z to be the Laplacian of the kernel matrix. Ordering the second smallest eigenvector of Z will give the correct ordering of Y. We have set up the theoretical results to show consistency.