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Understanding and predicting how the interconnected and interdependent world of the twenty-first century
operates and affects the welfare of billions of people around the world requires statistical procedures for learning
from network and attribute data. More often than not, network and attribute data are discrete and dependent, and
independent replications of networks are unavailable. In such scenarios, it is natural to base statistical learning on
models with conditional independence properties, which facilitate theoretical guarantees for statistical procedures
in single-observation scenarios. In other words, it is natural to base statistical learning on graphical models which
possess conditional independence properties by construction, and admit exponential-family representations of joint
distributions and GLM-representations of conditional distributions. Such models can be viewed as generalizations
of GLMs for dependent network and attribute data and are widely used in practice, implemented in more than 20
R packages and downloaded more than 2.5 million times from the RStudio CRAN server alone. Having said that,
probabilists and statisticians have expressed concern about the probabilistic behavior of such models and whether
statistical learning is possible based on a single observation of discrete and dependent network and attribute data
[e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Building on [12, 13], we introduce a novel geometric approach to obtaining
convergence rates for scalable M -estimators of graphical models based on a single observation of discrete and
dependent random variables, with applications to discrete and dependent network and attribute data.
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