Agenda

Day 2: July 6, 2023 (THU)

Start Time (ECT)End Time (ECT)TrackSession TitleSpeaker(s)RoomChair
9:009:25Invited Sessions - Psychometrics and Machine learningIdentifying the Onset of Careless Responding: A Machine Learning ApproachAndreas AlfonsC.003Andreas Alfons
9:259:50Invited Sessions - Psychometrics and Machine learningQuantifying effects of rating-scale response bias: robustness properties of correlation measuresArchimbaud AuroreC.003Andreas Alfons
9:5010:15Invited Sessions - Psychometrics and Machine learningExploring the measurement model in (high-dimensional) multigroup data: Regularized joint latent variable analysisKatrijn Van DeunC.003Andreas Alfons
10:1510:40Invited Sessions - Psychometrics and Machine learningUsing machine learning for study planning in psychologyRudolf DebelakC.003Andreas Alfons
9:009:25Invited Sessions - Probabilistic predictions and forecastingReliable uncertainty estimation via proper scoresFlorian BuettnerC.002Viktor Bengs
9:259:50Invited Sessions - Probabilistic predictions and forecastingUsing High-Frequency data to Improve Forecast EvaluationHajo HolzmannC.002Viktor Bengs
9:5010:15Invited Sessions - Probabilistic predictions and forecastingA Gentle Introduction to
Conformal Regressors and Predictive Systems
Henrik BoströmC.002Viktor Bengs
10:1510:40Invited Sessions - Probabilistic predictions and forecastingAn introduction to Venn-ABERS PredictorsPaolo ToccaceliC.002Viktor Bengs
10:4011:10Coffee-BreakCoffee-Break-Hall-
11:1011:30Contributed Sessions -Bayesian statistics

Bayesian Geographically Weighted Regression with Fused Lasso PenaltyToshiki SakaiC.101Winfried Steiner
11:3011:50Contributed Sessions -Bayesian statistics

Objective Bayesian inference for recall-based studies with application to breastfeeding dataVikas BarnwalC.101Winfried Steiner
11:5012:10Contributed Sessions -Bayesian statistics

Bayesian Systemic Risk Analysis using Latent Space Network ModelsMike K.P. SoC.101Winfried Steiner
11:1011:30Contributed Sessions -Machine and deep learning applications

Investigating the Impact of Word Embeddings on Fake News DetectionAdalbert F.X. WilhelmC.103Lynn D'eer
11:3011:50Contributed Sessions -Machine and deep learning applications

Evaluating the Risk Alignment of Preference-Based Reinforcement Learning AgentsMarvin SchweizerC.103Lynn D'eer
11:5012:10Contributed Sessions -Machine and deep learning applications

Graph Neural Networks for Food Recommendation SystemsLeonid KholkineC.103Lynn D'eer
12:1012:30Contributed Sessions -Machine and deep learning applications

The impact of shocks on the company’s market valuation – An empirical analysis during the Covid-19 pandemicKai FischerC.103Lynn D'eer
11:1011:30Contributed Sessions -Clustering

Quantifying variable importance in cluster analysisChristian HennigC.002Stefan Van Aelst
11:3011:50Contributed Sessions -Clustering

Hierarchical variable clustering using singular value decompositionJan BauerC.002Stefan Van Aelst
11:5012:10Contributed Sessions -Clustering

Watson: An R Package for Fitting Mixtures of Watson DistributionsLukas SablicaC.002Stefan Van Aelst
12:1012:30Contributed Sessions -Clustering

Robust co-clustering for data exploration and anomaly detection in the high-dimensional settingEdoardo FibbiC.002Stefan Van Aelst
11:1011:30Contributed Sessions -Statistical methodology
Compositional splines for representation of bivariate density functionsStanislav ŠkorňaC.102Peter Filzmoser
11:3011:50Contributed Sessions -Statistical methodology
Nonparametric Snake Test For Multivariate SkewnessMalgorzata MarkowskaC.102Peter Filzmoser
11:5012:10Contributed Sessions -Statistical methodology
On the Principle of Reflection in Genetic and Evolutionary AlgorithmsAndreas Geyer-SchulzC.102Peter Filzmoser
12:1012:30Contributed Sessions -Statistical methodology
Evaluating Weights for Sample Selection Bias CorrectionAn-Chiao LiuC.102Peter Filzmoser
12:3014:00LunchLunch---
12:3013:30Members meeting GfKlMembers meeting GfKl-C.001-
14:0014:30JDSSVThe Cellwise Minimum Covariance Determinant
Estimator
Peter RousseeuwC.003Patrick Groenen and Stefan Van Aelst
14:3015:00JDSSV Aspects of Trustworthy Reinforcement LearningAnn NowéC.003Patrick Groenen and Stefan Van Aelst
15:0015:30JDSSVInformation about JDSSV - Call for Review Editors for the Journal of Data Science, Statistics and VisualizationPatrick Groenen and Stefan Van AelstC.003Patrick Groenen and Stefan Van Aelst
15:3016:00Coffee-BreakCoffee-Break-Hall-
16:0017:00Keynote Day 2An educational tour on quantile regressionDomenico VistoccoC.003Mia Hubert
18:0020:00Reception @ City HallReception @ City Hall-City Hall-